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Unsolved
Problems of
@ proeesrec | \X/hile the basic physics of ionospheric conductivity are

et known, the formulas are often written in different ways:

M. (Fred) H. Rees [1989]

complete conductivity coefficient for the Birkeland current parallel to the magnetic
field 1s
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(8.3.18)
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which includes the electron—ion collision frequency, v.. Electron—ion collisions
become important at high ionospheric levels where the degree of ionization is large.
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(above) M.C. Kelley [1989],
is the same form as by

Su. Basu [1985]
(in Air Force Handbook of Geophysics

and the Space Environment)

Other variations of these
equations have been seen.
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Unsolved
@@ﬁ%@’ﬁ%@% To calculate the ionospheric

conductivities you need to know:

e magnetic field strength
e neutral composition
* temperature

e ion/electron densities
And to get these, you also need to know:

e sunlight ionization rates and equilibrium densities
 ion production rates from precipitating particles
e recombination rates

e plasma drift from day to nightside (cannot do in 1D)
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Ridley et al. [2004] add scattering

to smooth conductance across the terminator

The solar component can be
approximated as (Moen and Brekke, 1993):

Ty = Fig5(0.81cos(¢) + 0.54\/cos(¢))) (11)
Tp = Fi§5(0.34cos(¢) +0.93,/cos(¢))), (12)

where Fig7 1s the solar flux intensity at 10.7cm, and ¢ 1s the
solar zenith angle.

Plate 4 shows simulation results 1n which there are only 3
sources of conductance: (1) solar EUV, (2) scattering of the
sunlight across the terminator and (3) mightside “starlight™
conductance. The nightside Pedersen conductance 1s esti-
mated to be 0.25 mhos, which dominates on the mightside
(neglecting the aurora, as 1s done here). The solar EUV
strongly dominates on the dayside. All conductances within
the code are summed together using a vector summation. For
example, the total Hall conductance discussed below 1s:

LH = \/ ZiEuv + Siiscat T ThisL: (13)

where Xggyv 1s the solar EUV Hall conductance (1.e. Moen
and Brekke, 1993), Xys.,¢ 15 the scattered sunlight Hall con-
ductance, and ysy 1s the starlight Hall conductance.

Pedersen Conductance Profile
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Fig. 2. A plot of the Pedersen conductance as a function of solar
zenith angle. This shows the solar driven conductance, a scattering
term which causes the conductance to be smoother across the ter-
minator, and a nightside constant conductance. The squares of the
conductances are added and the square root 1s taken to derive the
total Pedersen conductance.



B o Fuller-Rowell and Evans [1987] used electron energy influx

preesrerc | and energies from TIROS-NOAA satellites to build statistical
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using a statistical model of electron flux

from DMSP measurements, sorted by the Kp index.

Hardy et al. used empirical
formulas derived from
numerical computations by
Robinson et al. [1987], ——
relating the conductances to
average energy and energy

flux of the electrons:

average energy is in keV,
and energy flux in ergs/cm? - sec
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Fig. 1. Comparison of relations between conductances and the
average energy of a Maxwellian distribution with an energy flux of 1
ergs/cm? s. The results of Vickrey et al. [1981] represent those ob-
tained using an energy deposition code. The results shown by dashed
lines are those given by equations (3) and (4) of this paper.




@ pleed Ahn et al. [1983, 1998] used radar measurements of

Magnetospheric o c .
P conductivity and ground observations of magnetic

oo e perturbations to derive empirical relationships, then use delta-
B to obtain global maps.
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g@%?éﬁgof The Hardy et al. [1987] model produces (mostly) reasonable looking current

"P"haygs%%fospheﬁc patterns when combined with the W96 electric potential model.
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Pedersen Conductivity
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But from personal experience, the combination is known to be terrible for
predicting geomagnetic variations at the ground!
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Bi‘;@’ﬁgigs‘;%e,,-c Gjeroloev and Hoffman [2000] looked at
_~Phses conductivity within auroral substorms

DE-2 electron precipitation measurements,
sorted by DE-1 imaging, used in a
monoenergetic conductance model [Reiff, 1984]
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f= Megretsphert Lummerzheim et al. [1991]: Multispectral auroral images

o o omen: 11O the Dynamics Explorer satellite used to construct
maps of auroral electron energy deposition, mean energy, and
ionospheric conductances. An auroral model is used to infer

conductances from brightness ratios of different spectral emissions.

Energy Flux Pedersen Conductivity
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Green et al. [2007] used data from SuperDARN,

[ridium, Oersted, and ground magnetometers

J ar From Ground-Based Magnetometer Data

—

J ¢ From Iridium, DMSP, and Oersted Data
E | From Combined SuperDARN and DMSP Data

N — — ) — —

J, - E|
E, [

3 P

~__ - e

Figure 9. Pedersen conductance calculated from J,
(Figure 8) and E, (Figure 7) for 1 November 2001
0330-0430 UT. Model conductance contours are over-
layed. The blue line indicates the path of the F15 DMSP
satellite. Grey masking indicates regions of high uncertainty
due to variability in the time-averaged electric field.

Figure 10. Hall conductance calculated from J. (F igure 8)
and £, (Figure 7) for 1 November 2001 0330-0430 UT.

74kV

~__ A _ e

Figure 7. Electric field (rotated by 90° counter clockwise)
resulting from the merging of E, and EPMSP data in
Figure 6.

Figure 8. jJ_ constructed from the addition ofjdf(Figure 5)
and J ¢ (Figure 3).

g, [mho]
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Magnetospheric ) . o :
Physics low, likely due to using conductivity values too high.
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MHD models had often produced electric potentials that are too high,
(more so in the past), perhaps using conductivity too low.

AMIE 18:30 UT, Jan.27,1992  Global Simulations 18:30 UT WEIMER
Northern Hemisphere kv Electric Potential, Northern 257.2
12 80 Y +Y
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Winglee et al., 1997
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Magnetospheric

Yet, even today the most advanced MHD codes seem to be stymied by
difficulties in getting the ionospheric conductivity right.
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SWMEF computations by CCMC [Pulkkinen et al., 2013], plots by author.
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Physics
ionosphere control the magnetosphere!
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red: summer
green: equinox

blue: winter

3to4 mV/m:
range where
electric
potential
saturation
begins

Total FAC vs. IEF curve is linear far beyond the range where
the electric potential saturation effect appears. What is the
role of ionospheric conductivity here !

Mean Dawn and Dusk Region 0 and 1 Current vs. IEF
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(or perhaps never asked)

How do inter-hemispheric differences in ionospheric conductivity
affect solar wind coupling to, or within, the magnetosphere and
ionosphere!

How the does the total conductive "load" of the ionosphere that is
presented to the magnetosphere vary with season?

At equinox, with both poles equally illuminated, is the total
"parallel" resistance different from solstices, when one pole has a
higher conductivity, and the other is lower! Can changes in the

total conductance affect some phenomena such as substorm

periodicity!

Or does it not matter?



Unsolved
@ mob/ems ofh
agnetospheric
Phygs/cs P Summal’y

WORKSHOP * SCARBOROUGH, UK « SEPTEMBER 2015

We know a lot about the ionosphere’s conductance.
A large number of studies done, using different techniques.
Likewise, a large number of different results achieved.

So maybe we don’t know so much after all. Conductivity may
be the least, well-quantified variable in the system.

What is needed within the community is a comprehensive
conductivity model, with software code provided. Needs to

use IMF values, not just Kp. It likely would be better to use
EUV indices, rather than Fio.7.

How variability of the ionosphere influences the interaction
with the magnetosphere is not well known, and is an
unsolved problem.



