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| Not so much new physics, but determining what is important to include?
| Cannot be complete. Where not, feel invited to help make it more so.

| Densities can vary by 4 orders in magnitude; boundary locations vary much?



Outer Plasmasphere In
Continuous Transition

Fraction of Time for Different
States of the Plasmasphere
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A simple demonstration of time spent refilling using Kp from the National Geophysical
Data Center’s Space Physics Interactive Data Center from 1974 through 2014 and
Carpenter and Anderson’s [1992] expression for the plasmapause L-shell: Lpp; = 5.6 —
0.46Kpmax. The plasmasphere is assumed filled after 8-days of quiet at L=4 (Park,
1974) and in less (more) time inside (outside) that L-shell in proportion to (L/4)*.



Matters of the Plasmasphere

« Why should anyone care about the plasmasphere?

— Cold, dense plasma influences wave modes, wave propagation, wave-
particle instability, particle-scattering effects, spacecraft charging

« There may be ionospheric outflow at all latitudes and local times.

image courtesy Mike Henderson



“On the Table” for Influencing
P|asmaSpherIC OUtflOW (an incomplete treatment)
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Extra Heating Needed
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Fig. 10. Observed ion temperatures (x) together with  Fig. 11. H+ temperature profile observed by
calculated temperatures for different percentages of ~ DE1/RIMS together with calculated
photoelectron trapping plotted versus local time. temperatures calculated by FLIP for selected
(After /6/.) locations with indicated additional heat sources.

Comfort et al [1997] found extra heating was required to explain
observed temperatures in both the inner plasmasphere and outer
plasmasphere during refilling. Could come from greater photoelectron
heating efficiency, ring current collisional heating, and wave-particle
heating



One Recent Modeling Effort Focused on Effects
of the Thermosphere during Quiet Times

SAMI3 (Krall et al., 2014) solves the continuity and momentum
fluid equations for 7 ions and includes the thermospheric wind-
driven dynamo electric field.

The temperature equation is solved for 3 atomic ions and
electrons, with a higher photoelectron heating rate than used
previously.

The Weimer global electric field is used, but not designed for
subauroral latitudes and the parallel interchange mode is not
included in the simulation, which may be significant during quiet
conditions.

Krall et al., (2014) find thermospheric winds must be included to
represent observed asymmetric plasmaspheric structure in the
equatorial plane, yet this also results in lower refilling rates than
without winds.

Rough agreement with IMAGE/RPI observations are found, but
measurements are limited in MLT and time.

SAMIS refilling rates are similar to RPI derived rates, though the

trend tends to be smaller than observed at low L-value and higher 5 500k

at higher L.
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Persistent Plumes May Require 10x
the Refilling Rate to Explain

Borovsky et al. (2014) find what appears to be drainage plumes persisting for many days with elevated Kp.
Initial drainage (1.5-2 days) of the outer plasmasphere is sometimes followed by sustained, narrow-MLT plume-
like high densities for as long as 11 or more days.

Refilling rates of 100-500 cm-3 day-1 may be necessary without any other source. Refilling rates at
geosynchronous orbit have previously been found to be 0.6-50 cm-3 day-1 (Denton et al., 2012 and references
therein) and possibly include early to late variation in the refilling rate.

Other possible sources include substorm disruption, velocity-shear instability, and ionospheric, high-latitude
tongue of ionization. "
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Is Refilling a Two-Stage Process?

Geosynchronous orbit affords a view of flux-tube refilling both at low densities characteristic of the trough and at

higher densities associated with the plasmasphere. Refilling is refilling 1sn’t it?

o

=

Density (cm3)

Time (hr)
Gallagher et al., 1998 used Higel & Wu, 1984 GEOS 2 measurements over 7
consecutive days to obtain the Refilling rate = 13.4 +1.9 [em™3day™].
In this case the rate is based on the gradient of each linearly-fitted rising-density

=350 - 100

profile.

Lawrence et al., 1999, using 7-years of LANL MPA measurements found

Cold Ion Density

refilling at low densities (first 24-h) much less than during later refilling
(2-4 days). Rates are based on the density change since start of refilling in days. ¥
Early rate = 0.6 — 12 [em™3day™]

Late rate = 10 — 50 [cm~3day™?]

&

Su etal., 2001 further extended MPA studies to include 11-years of data and
characterization of refilling as a function of activity, local time,

season, and solar cycle phase. Here however rates were quantified as the
time a flux tube 1s exposed to refilling, dependent on convection, finding

Early rate = 2.5 — 6.5 [cm™3day™1]
Late rate = 10 — 25 [cm™3day™1]
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Mass-Dependent Outflow

e Sandel (2011)
found He+
abundance changed
during refilling,
suggestive of mass
dependent refilling
rates.
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There is More to Refilling
Than Might be Expected?
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Then There’s the Warm-Plasma Cloak

e The plasma cloak is a bidirectional field-aligned distribution with

energies from a few eV to <400 eV, found just outside the ~1 eV
plasmasphere.

 Thought to be ionospheric plasma energized through a stepwise
process at high latitudes.

e Does this or other high latitude sources contribute to or confuse
interpretations of plasmasphere refilling and dynamics?

Boundariesin plasma
properties may not be
the same as
boundaries in plasma
processes, such as

ExB convection or
ionospheric outflow.




“The experimenter who does not know what he is
looking for will not understand what he finds.”

“The more you explain it, the Claude Bernard “Anyone who isn't confused
more | don't understand it.” really doesn't understand the
Mark Twalin situation.” Edward R. Murrow

“It is difficult to get a man to understand something
when his salary depends upon his not understanding it.”
Upton Sinclair

What is the significance of thermospheric properties and dynamics
upon refilling?

What changes in ionospheric chemistry influence refilling?

How effectively does photoelectron heating influence refilling?

Do the physical processes operating during refilling change as
refilling progresses?

What is the role of mass and how that changes during refilling?
What high altitude processes influence refilling?

Does plasma of different origin and process confuse our picture of
plasmaspheric refilling?
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