What controls the dayside reconnection rate?

currents

Pedersen currents

Pedersen currents

Hall current

Steve Milan^{1,2}

¹University of Leicester, UK ²BCSS, University of Bergen

steve.milan@le.ac.uk

BIRKELAND CENTRE

What is dayside reconnection? How do we measure it? **Empirical coupling functions** Physics-based coupling functions Temporal and spatial variability Other complications

$F_{PC} \approx 0.2 \text{ GWb} (3\%)$ $F_{PC} \approx 1.2 \text{ GWb} (15\%)$

Ring current modulation of magnetospheric open flux content

Proxy for open

flux content

Proxy for ring

current intensity

data gaps due to

orbit of IMAGE

eicester

steve.milan@ion.le.ac.uk

University of

The response of the magnetosphere / ionosphere to a burst of low latitude magnetopause reconnection

BIRKELAND CENTRE

steve.milan@le.ac.uk

University of

eicester

after Cowley and Lockwood (1992)

The expanding/contracting polar cap

Faraday (1831) Siscoe and Huang (1985) Cowley and Lockwood (1992)

AMPERE and SuperDARN

courtesy

Lasse Clausen

Influence of IMF B_{γ}

BIRKELAND CENTRE
FOR SPACE SCIENCE

The ECPC explains the relationship between open magnetic flux, reconnection voltages, and magnetic flux transport voltage

but

it does not specify what the reconnection voltages should be

Anatomy of a coupling function

Poynting flux in solar wind

Anatomy of a coupling function

solar wind electric field or transport of magnetic flux

width of channel in solar wind that impacts magnetopause

reconnection efficiency due to geometry

Anatomy of a coupling function

Newell et al. (2007)

Determined by cross-correlation with (averaged) geomagnetic indices

- interval of $B_7 > 0$ nT
- southward turning, $B_7 < 0 \text{ nT}$
- growth phase with no nightside activity
- end at substorm onset

Identified 26 intervals

steve.milan@ion.le.ac.uk University of * * eicester

 V_X

 $F'_{PC}(t) = \int \Phi_D(\alpha, \beta, \gamma, \delta; t) dt$

Comparison with SuperDARN

During non-storm intervals we find a good comparison with SuperDARN measurements of ΔΦ, with a coefficient of proportionality of 1.4 and an offset of 25 kV

steve.milan@le.ac.uk

University of

eicester

Physics-based coupling functions

The solar wind electric field does not control the dayside reconnection rate *Borovksy* (2014)

Dayside reconnection rate is determined by conditions local to the magnetopause which depend on the condition of the magnetosheath, which in turn is a complicated and spatially-varying function of solar wind parameters

Episodic reconnection – flux transfer events

Sandholt, Moen

Flux transfer events

Poleward-moving auroral forms (PMAFs) have radar flow (PIFs) and backscatter (PMRAFs) counterparts

SuperDARN:

Poleward-moving radar auroral forms (PMRAFs)

Flux transfer events

An association has been found between magnetopause FTEs and radar PIFs and PMRAFs

BIRKELAND CENTRE
FOR SPACE SCIENCE

Milan et al. (2000a); Chisham et al. (2004)

A "cusp spot" forms when the IMF is directed northwards

Questions

- Why can we predict the reconnection rate from upstream parameters?
- How does the magnetosheath organise itself to process the solar wind?
- What is the local time distribution of reconnection?
- Why is reconnection patchy and bursty?
- Why does the patchiness and burstiness display a range of scales?
- How do we reconcile magnetopause and ionospheric signatures of FTEs?
- What role does mass-loading from the magnetosphere play?

